ПAmIBIA UПIVERSITY
OF SCIEПCE AПD TECHПOLOGY
FACULTY OF ENGINEERING AND SPATIAL SCIENCES

DEPARTMENT OF ARCITECTURE AND SPATIAL SCIENCES

QUALIFICATIONS: BACHELOR OF GEOMATICS and DIPLOMA IN GEOMATICS	
QUALIFICATIONS CODES: 07BGEO, 06DGEO	QUALIFICATION LEVEL: Level 7-07BGEO Level 6-06DGEO
COURSE CODE: BSV521	COURSE NAME: Basic Surveying
DATE: June 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	Mr F. J. Louw
MODERATOR:	Mr S. Sinvula

INSTRUCTIONS

1. You MUST answer ALL QUESTIONS
2. Write clearly and neatly.
3. Number the answers clearly.
4. Make sure your Student Number is on the EXAMINATION BOOK(s).
5. MAKE SURE YOUR STUDENT NUMBER IS ON THE DATA SHEET AND THAT YOU SUBMIT IT WITH YOUR EXAMINATION BOOK(S).

PERMISSIBLE MATERIALS

1. Calculator, ruler, pencil and eraser.

THIS QUESTION PAPER CONSISTS OF 7 PAGES (Including this front page and 1 Data Sheet)

Question 1

1.1. Differentiate between a Measurement and an Observation.
1.2. Distinguish between "Zero south orientation" and "True orientation".
1.3. To carry out a survey one needs to consider certain principle factors before executing the survey, describe ALL these principle factors.
1.4. How would you test for the presence of parallax in the telescope of a theodolite?

Question 2

2.1. Use the following information and the sketch below to answer the questions below.

Distance $A C=77.105 \mathrm{~m}$
Distance $B E=62.663 m$
Distance DE $=13.569 \mathrm{~m}$
Angle $\alpha=37^{\circ} 14^{\prime} 53^{\prime \prime}$
Angle $\beta=15^{\circ} 53^{\prime} 47^{\prime \prime}$

2.1.1. Calculate the sides $A B$ and $A E$, using angle α and distance $B E$ in the $\triangle A B E$. Check your answer.
2.1.2. Calculate the side EC using $\triangle \mathrm{ACE}$.
2.1.3. Calculate the side $A D$ using $\triangle A B D$.
2.2. Use the levelling observations given on the levelling field sheet below to determine the final heights using ANY METHOD which provides a full arithmetic check. All usual checks must be done, and any mis-closures need to be distributed. Note that the BOLD values are the Inverted Staff Readings.

Levelling field sheet

Point	B.S.	I.S.	F.S.	Final Heights
ROOF 1	-0.524			1217.016
A		0.817		
B	0.966		0.975	
ROOF 2		0.899		
C	-0.838		-0.920	
D		1.207		
E		1.231		
ROOF 3			-0.802	1217.355

Question 3

3.1. Use the field observations at ROCK, to calculate final observed directions.

@Rock	$\mathrm{HI}=1.587 \mathrm{~m}$	
Point	Circle Left	Circle Right
Δ Wind	$287^{\circ} 53^{\prime} 45^{\prime \prime}$	$107^{\circ} 53^{\prime} 38^{\prime \prime}$
Δ Outlook	$298^{\circ} 19^{\prime} 11^{\prime \prime}$	$118^{\circ} 18^{\prime} 54^{\prime \prime}$
Stok	$131^{\circ} 04^{\prime} 53^{\prime \prime}$	$311^{\circ} 05^{\prime} 03^{\prime \prime}$
Pole	$169^{\circ} 59^{\prime} 54^{\prime \prime}$	$350^{\circ} 00^{\prime} 08^{\prime \prime}$
RO	$287^{\circ} 53^{\prime} 48^{\prime \prime}$	$107^{\circ} 53^{\prime} 45^{\prime \prime}$

3.2. Use the following Formula and the observations at POP, to answer the questions that follows.

Please note:

The Instrument Correction and Prism Constant, the Atmospheric Correction, and the Conversion to German Legal Metre are already applied to all measured distances.

Combined Sea level \& Scale Enlargement Factor $=1+\left[\left(y^{2} /\left(2 R^{2}\right)\right)-(H / R)\right]$, where $R=6370 \mathrm{~km}$.

Co ordinates

Name	Y	X	Z/Height
Δ DURANT	+40312.280	-54416.470	
Δ JAGER	+56141.390	-50981.830	
POP	+39774.150	-57965.790	1750.000

@ POP Height of Instrument is 1.658 m .

Name	Final Observed Direction	Slope Distance	Zenith Angle
\triangle DURANT	$8^{\circ} 37^{\prime} 18^{\prime \prime}$		$89^{\circ} 45^{\prime} 48^{\prime \prime}$
\triangle JAGER	$66^{\circ} 53^{\prime} 37^{\prime \prime}$		$89^{\circ} 45^{\prime} 48^{\prime \prime}$
ST1	$127^{\circ} 34^{\prime} 36^{\prime \prime}$	332.319 m	$91^{\circ} 24^{\prime} 44^{\prime \prime}$

3.2.1. Calculate and apply all corrections to observations at POP(directions \& distances).
3.2.2. Calculate the co-ordinates for ST1

Question 4

4.1. Calculate the traverse on Data Sheet 1. Use the said Data Sheet for all your calculations. Use the Bowditch Rule to adjust the traverse. Please note that the directions are oriented, and the distances are final. Please detach the Data Sheet and submit with your examination book. (10)

4.2. Use the following observations at ST2, to calculate the Y and X co-ordinates for ST2.

Please note:

The Prism Constant, the Atmospheric Correction, the Conversion to German Legal Metre, and the Combined Sea level \& Scale Enlargement Scale Factor correction are already applied to all measured distances.

Co-ordinates

Name	Y	X	Z/Height
Δ Eros	-10489.688	+60272.255	1810.680
TSM14	-5297.730	+59471.920	

@ ST2 Height of Instrument is $1,750 \mathrm{~m}$.

| Name | Fin. Observed Direction | Slope Distance | Zenith Angle | |
| :--- | :--- | :--- | :--- | :--- | Height of Target

Question 5

5.1. Use the information and observations below to calculate the co-ordinates for the point DOP, by using the Q-point method of a resection calculation.

Co-ordinates

Name	Y	X
\triangle DRAAI	-27114.600	+ 154255.400
\triangle NAB	- 35842.500	+ 153064.100
\triangle SES	-29097.400	+ 171069.100
@ DOP	Height of Instrument $=1.719 \mathrm{~m}$	
Name	Final Observed Dir.	
\triangle DRAAI	$147^{\circ} 16^{\prime \prime} 0{ }^{\prime \prime}$	
\triangle NAB	$253^{\circ} 23^{\prime} 23^{\prime \prime}$	
\triangle SES	$10^{\circ} 05^{\prime \prime} 5{ }^{\prime \prime}$	Long Leg

5.2. Use the following Formula to calculate the height of H 100 .
$\Delta H_{a b}=H_{l}-H_{s i g}+S_{a b} / \operatorname{Tan}(Z)+(1-k) . S^{2} /(2 R)$
$\mathrm{H}_{\mathrm{a}}=\mathrm{H}_{\mathrm{b}}-\Delta \mathrm{H}_{\mathrm{ab}}$
Where R is earth radius (use $R=6370000 \mathrm{~m}$), and k is an assumed relative ray curvature factor (use $k=0.13$).

Co-ordinates

Point	Y	X	Z
Δ Slangkop	-10489.680	+60272.260	1807.300 (Ground Level)
H1	-6845.587	+63371.410	

The JOIN distance from H 100 to Δ Slangkop is $\mathbf{4} 783.738 \mathrm{~m}$

@ H100	$\mathrm{HI}=1.780 \mathrm{~m}$			
Point/Station	Oriented Dir.	Slope Distance	Zenith Angle	Height of Pillar/Target
Δ Slangkop	178 ${ }^{\circ} 20^{\prime} 25^{\prime \prime}$		89 ${ }^{\circ} 50^{\prime \prime} 57^{\prime \prime}$	1.200 m (Top of Pillar)
WP1	$41^{\circ} 37^{\prime} 04 \prime$	696.561	$90^{\circ} 02^{\prime \prime} 07^{\prime \prime}$	1.865m (Top of Target)

Student Number \qquad

Data Sheet 1

Question 4.1.

Bowditch Adjustment Sheet

Note: All answers must be rounded off to $\mathbf{3}$ decimal places

